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Abstract— Distributionally robust optimization is a technique
for decision making under uncertainty where the probability
distribution of the uncertain problem is itself subject to uncer-
tainty. A novel data-driven MPC scheme is proposed to control
constrained stochastic linear systems using distributionally
robust optimization. Distributionally robust constraints based
on Wasserstein ball are imposed to bound the expected state
constraint violation in the presence of process disturbance. A
feedback control law is solved to guarantee that the predicted
states comply with constraints with regard to the worst-case
distribution within the Wasserstein ball centered at the discrete
empirical probability distribution. The resulting distributionally
robust MPC framework is tractable and efficient. The effec-
tiveness of the proposed scheme is demonstrated through two
numerical case studies.

I. INTRODUCTION

Model predictive control (MPC) has demonstrated remark-
able success due to its ability to handle multivariate dynamics
and constraints[1], [2]. MPC solves an open-loop optimal
control problem at each sampling time based on a nominal
model to decide a finite sequence of control actions from
which the first element of the sequence is implemented [3].

In the context of control under uncertainty, two important
methodologies arise to guarantee constraint satisfaction: Ro-
bust MPC (RMPC) [4] and stochastic MPC (SMPC). The for-
mer addresses the receding horizon optimal control problem
for uncertain systems in a deterministic fashion by assuming
bounded uncertainties and providing solutions for the worst
case-scenario. Some important approaches to RMPC are
min-max optimization [5] and tube-based MPC [6]. However,
some worst-case scenarios are unlikely to work in practice; as
resulting control designs tend to be over conservative or even
infeasible [7]. In addition to conservativeness, if the assumed
uncertainty sets are inaccurate, the controller may have poor
performance. To address this, approaches have been proposed
to reduce conservativeness in the context of RMPC, e.g. [8],
[9], [10].

In contract to RMPC, SMPC solves a stochastic optimiza-
tion problem by assuming distributional information of the
uncertainty [11]. Chance constraints on SMPC reduce the
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inherent conservativeness of robust MPC via the trade-off
between constraint satisfaction and closed-loop performance
[12]. However, deviation of the assumed distribution from
the true one caused by poor assumptions or limited available
data may result in sub-optimality, infeasibility and unwanted
behavior of the system [13].

To overcome the conservativeness of RMPC and the dis-
tributional mismatch of SMPC, we explore a distributionally
robust optimization approach - distributionally robust MPC.
In distributionally robust optimization (DRO), a variant of
the stochastic optimization is explored where the probability
distribution is itself uncertain. DRO minimizes an expected
loss function, where the expectation comes from the worst-
case probability distribution of an ambiguity set.

Just as wrong assumptions on the distribution of the uncer-
tainty can be detrimental to the objective’s performance on an
MPC scheme, chance constraints can also be affected by this
mismatch, incurring in severe violations. As a counterpart to
chance constraints, distributionally robust chance constraints
assume the actual distribution of uncertain variables belongs
to an ambiguity set. This ambiguity set contains all distri-
butions with a predefined characteristic (e.g. first or second
moments), and such an ambiguity set can be computed from
historical data. Distributionally robust constraints have direct
connection to the constraints incorporated in the classical
paradigms of RMPC and SMPC [14]. To capture a decision
maker’s attitude towards risk and ambiguity, distributionally
robust constraints [15] are considered in this work. Further-
more, we characterize the ambiguity set as a Wasserstein ball
around an empirical distribution with a radius defined by the
Wasserstein metric [16].

The Wasserstein ambiguity set has received increasing
attention in distributionally robust optimization due to its
modeling flexibility, finite-sample guarantee and tractable
reformulation into convex programs [17]. In contrast to a
Wasserstein ambiguity set, other ambiguity sets do not enjoy
these important properties. Specifically, approaches lever-
aging moment-based ambiguity do not have finite-sample
guarantees [18] and ambiguity sets using φ -divergence such
as Kullback–Leibler divergence typically contain irrelevant
distributions [19]. These drawbacks motivate our use of a
Wasserstein ambiguity set.

Distributionally robust optimization in control problems
has been studied with regard to different formulations of
objective functions. In the setting of multi-stage stochastic
optimal power flow problem, a framework is proposed to
solve multi-stage feedback control policies with respect a



Conditional Value at Risk (CVaR) objective [20]. A control
policy for wind power ramp management is solved via
dynamic programming by reformulating the distributionally
robust value function with a tractable form: a convex piece-
wise linear ramp penalty function [21]. For linear quadratic
problems, a deterministic stationary policy is determined by
solving an data-irrelevant discrete algebraic Riccati equation
[22]. The control policies for both finite horizon optimal
control problem with expected quadratic objective and in-
finite horizon optimal control problem with an average cost
can be determined concerning distributionally robust CVaR
constraints modeled by moment-based ambiguity sets [23].
Recently, a data-driven distributionally robust MPC with a
moment-based ambiguity set for quadratic objective function
under multi-stage risk measures was proposed in [24].

A. Main Contribution

Compared to existing related studies which consider linear
objective function or moment-based ambiguity sets, our work
uniquely considers a finite-horizon control problem with
distributionally robust constraints constructed by Wasserstein
ambiguity set. The main contributions of this paper are
summarized as follows:

1. A distributionally robust optimal control problem
with distributionally robust chance constraints and expected
quadratic objective is proposed to determine purified-output-
based (POB) affine control laws.

2. A practical Algorithm is proposed, which results in a
tractable conic optimization problem.

3. Finite sample guarantee of chance constraints is proved
and demonstrated via a case study.

B. Notation

Let x[k,k+N] denote the concatenated state vector
[x>k ,x

>
k+1, . . . ,x

>
N ]
> and [x[k,k+N]]i be the i-th entry of the

vector. {[x[k,k+N]]i}b
i=a denote a sequence of a-to-b-th entries

from the concatenated state vector. Let Tr(·) be the trace
operator. We denote by Sn

+ and Sn
++ the sets of all pos-

itive semidefinite and positive definite symmetric matrices
in Rn×n, respectively. The diagonal concatenation of two
matrices A and B is denoted by diag(A,B). Ai, j is the entry
of i-th row and j-th column in a 2D matrix and [A]i, j:k is the
row vector of i-th row and j-th to k-th columns in matrix
A. e j denote a column vector with all entries 0 expect j-th
entry equal to 1.

All random vectors are defined as measurable functions on
an abstract probability space (Ω,X ,P) , where Ω is referred
to as the sample space, X represents the σ -algebra of events,
and P denotes the true but unknown probability measure.
We denote by δξ the Dirac distribution concentrating unit
mass at ξ and by δk the state difference of nominal and
disturbed system at sampling time k. The N-fold product of
a distribution P on Ξ is denoted by PN , which represents

a distribution on the Cartesian product space ΞN . M (Ξ) is
the space of all probability distributions Q supported on Ξ

with finite expected norm. The training data set comprising
Ns samples is denoted by Ξ̂Ns :=

{
ξ̂i

}
i<Ns
⊆ Ξ.

C. Organization

The remainder of this paper is organized as follows.
Problem formulation of determining POB affine control laws
for disturbed systems is introduced in Section II. Prelimi-
naries on distributionally robust control embracing Wasser-
stein metric and the corresponding optimization problem are
covered in Section III. The main results including tractable
formulation of distributionally robust optimization problem
and finite sample guarantee are discussed in Section IV
along with a practical Algorithm. Simulation experiments for
case studies mass spring system and inverted pendulum are
illustrated in Section V, and the results are also analyzed.
Conclusions are summarized in Section VI.

II. PROBLEM FORMULATION

In this section we explain how to derive POB affine control
laws [25] for a discrete-time linear time-invariant (LTI)
dynamical system with additive disturbance. We consider a
discrete-time LTI system at time k

x0 = x

xk+1 = Axk +Buk +Cwk

yk = Dxk +Ewk,

(1)

where state xk ∈Rnx , input uk ∈Rnu , output yk ∈Rny and the
disturbance wk ∈ Rnw . Both process noise and measurement
noise are modelled via matrices C and E. Our design target
is to enable the closed-loop system of (1) to meet prescribed
requirements. One of the requirements is to satisfy polyhe-
dral state constraints Cpx[k,k+N] ≤ Dp within the prediction
horizon N.

The POB affine control laws are derived based on the
discrepancy between the disturbed system and its corre-
sponding nominal system (see Definition 2.2). Without loss
of generality, we assume the equilibrium point is at the
origin.

Definition 2.1 (Model): Given a disturbed system in the
form of (1), we define the corresponding nominal system
initialized at the equilibrium point and not disturbed by
exogenous inputs as model

x̂0 = 0
x̂k+1 = Ax̂k +Buk

ŷk = Dx̂k.

(2)

The open-loop state difference of model and disturbed
system δk = xk− x̂k evolves according to the system matrices
and disturbances. The accumulated influence of disturbances
can be measured via purified outputs vt =Dδt +Ewt = yt− ŷt
where t ∈ [k,k+N−1]. This allows us to consider POB



affine control laws based on the history of disturbance and
inputs [26].

Hence, we will solve the following problem: Given system
matrices, initial state x0 = x and collected disturbance data
points, we determine control laws for prediction horizon N
by leveraging a tractable data-driven optimization problem,
such that the system can be steered to a desired equilib-
rium state while satisfying prescribed chance constraints
E
[
Cpx[k,k+N] ≤ Dp

]
≥ 1−β . The parameterized affine con-

trol laws will be defined as following.

Definition 2.2 (POB Affine Control Laws): At sampling
time t, given purified outputs from k to t, we define POB
affine control laws as

ut = ht +
t

∑
τ=k

Ht,τ vτ (3)

with t ∈ [k,k+N−1].

Note that the definition of POB affine control laws above
is equivalent to the affine control laws only dependent on
initial state and disturbance sequence or only dependent on
outputs of disturbed system.

Lemma 1 (Equivalent Control Laws): For every POB
affine control laws in the form of (3), there exists control
laws resulting in exactly the same closed-loop state-control
trajectories dependent only on:

(i) initial state and disturbance sequence

(ii) outputs of disturbed system.

Proof: (i) follows directly from the definition of purified
output. We reformulate (3) by inserting the accumulated state
discrepancy and the current disturbance. Then we acquire

vt =
t

∑
τ=0

DAt−τCτ x0 +Ewt (4)

Now we can show that (i) holds after inserting (4) into (3).

The proof of (ii) follows a similar path as the one for
theorem in [25, Theorem 14.4.1.].

From lemma 1, it is thus clear that for a disturbed linear
system, it is possible to exert control actions computed by
affine laws in disturbance to guarantee equivalent closed-loop
state trajectories resolved by output feedback controller.

For the convenience of constructing the optimization prob-
lem to determine control laws, we derive a compact form
of dynamical system applying the POB control laws. The
dynamics of the linear system over the finite horizon N can
then be written as xk,k+N = Axx+Bxu[k,k+N−1]+Cxw[k,k+N−1]
and the corresponding measurements is formulated as
y[k,k+N−1] = Ayx+Byu[k,k+N−1]+(Cy +Ey)w[k,k+N−1], where

Ay =

 DA0

...
DAN−1

, By =


0 0 . . . 0 0

DA0B 0 . . . 0 0

.

.

.
. . .

. . .
.
.
.

.

.

.

.

.

.

.

.

.
. . . 0 0

DAN−2B DAN−3B . . . DA0B 0

 and

Ey =

 E
. . .

E

. Consider now the inputs character-

ized by POB affine control laws, we derive u[k,k+N−1] =
HN(C̃y + Ẽy)w̃[k,k+N−1] = H̃Nw̃[k,k+N−1], where w̃[k,k+N−1] =[
1 w>[k,k+N−1]

]>
as extended disturbance vector, C̃y =[

0 0
Ayx0 Cy

]
and C̃E =

[
1 0
0 Ey

]
. Furthermore, we use HN

with subscript N to denote the control laws for prediction
horizon N. Finally, this allows us to write the stacked state
vector as linear matrix equation

x̃[k,k+N] =
(
BxH̃N +C̃x

)
w̃[k,k+N−1], (5)

where C̃x =
[
Axx0 Cx

]
. Our goal is then to determine the

control laws H̃N which steer the system to the origin whilst
guaranteeing distributionally robust constraint satisfaction.

III. DISTRIBUTIONALLY ROBUST MPC

A. Ambiguity Sets and Wasserstein Balls

Distributionally robust optimization is an optimization
model where limited information about the underlying prob-
ability distribution of the random parameters in a stochastic
model is assumed. Therefore, to model distributional uncer-
tainty, we characterize the partial information about the true
distribution P by a set of probability measures on (Ω,X).
This set is termed as ambiguity set [15]. In this paper,
we focus on an ambiguity set specified by a discrepancy
model [14] wherein the distance function on the probability
distribution space is characterized by the Wasserstein metric.
The Wasserstein metric defines the distance between all
probability distributions Q supported on Ξ with finite p-
moment

∫
Ξ
‖ξ‖pQ(dξ )< ∞.

Definition 3.1 (Wasserstein Metric [27]): The Wasser-
stein metric of order p ≥ 1 is defined as dw : M (Ξ)×
M (Ξ)→R for all distribution Q1,Q2 ∈M (Ξ) and arbitrary
norm on Rnξ :

dW (Q1,Q2) := inf
Π

{(∫
Ξ2
‖ξ1−ξ2‖p

Π(dξ1, dξ2)

)1/p

(6)

where Π is a joint distribution of ξ1 and ξ2 with marginals
Q1 and Q2 respectively.

Specifically, we define an ambiguity set centered at the
empirical distribution leveraging the Wasserstein metric

Bε

(
P̂Ns

)
:=
{
Q ∈M (Ξ) : dW

(
P̂Ns ,Q

)
≤ ε

}
(7)

which specifies the Wasserstein ball with radius ε > 0 around
the discrete empirical probability distribution P̂Ns . The empir-
ical probability distribution P̂Ns := 1

Ns
∑

Ns
i=1 δ

ξ̂i
is the uniform

distribution on the training data set Ξ̂Ns :=
{

ξ̂i

}
i≤Ns
⊆ Ξ. δ

ξ̂i

is the Dirac distribution concentrating unit mass at ξ̂i ∈Rnξ .
The radius ε should be carefully selected so that the ball
can contain the true distribution P with high fidelity and



not unnecessarily large to hedge against over-conservative
solutions. The impact of the ball radius will be illustrated in
the Section V.

B. Data-Based Distributionally Robust MPC

We now consider the optimal control problem for the
system (5) enforcing distributionally robust constraints to be
satisfied, i.e.

sup
Q∈Bε(P̂Ns)

EQ[`(ξ ,HN)]≤U, (8)

where ` is a function representing state constraints in the
aforementioned polyhedral form dependent on affine control
laws and disturbance, and U is a prescribed bound. Dis-
tributionally robust constraints in a stochastic setting can
take the information about the probability distribution into
account via (7) such that the prescribed state constraints in
an average sense can hold with respect to the worst-case
distribution within the ball (7).

Our aim is to find admissible affine control laws with
respect to the distributionally robust constraints whilst min-
imizing an objective JN . We characterize the objective func-
tion as a discounted sum of quadratic stage costs

JN (x,HN) := infQ∈Bε(P̂Ns)
EQ
{

∑
k+N−1
t=k β t

[
x>t Qxt +u>t Rut

]
+ β Nx>k+NQ f xk+N

}
,

(9)
with β ∈ (0,1] as discount factor. It is further assumed that
Q,Q f ∈ S+and R ∈ S++ so that JN is convex. We can now
formulate the optimal control problem at sampling time k
to determine affine control laws within an N-step prediction
horizon

infHN JN (x,HN)
s.t. xt+1 = Axt +But +Cwt , x0 = x, ∀t ∈ [k,k+N]

supQ∈Bε(P̂Ns)
EQ[` j(ξ ,HN)]≤U j, ∀ j ≤ Nb,

(10)
where Nb is the number of constraints imposed on states.
This problem with distributionally robust constraints appears
to be intractable due to the infinite-dimensional optimization
over probability distributions. However, we will demonstrate
a tractable reformulation in the next section.

IV. A TRACTABLE CONVEX CONE PROGRAM
REFORMULATION

In this section we will rewrite the distributionally robust
control problem (10) with type-1 (p = 1) Wasserstein metric
into a finite-dimensional convex cone program leveraging
results from robust and convex optimization. After proposing
a tractable reformulation, we will introduce a practical data-
driven Algorithm to handle the disturbed constrained control
problem. The control laws solved as cone programs enjoy
the finite sample guarantee, i.e. constraint (8) is satisfied with
regard to a specified level of confidence by collecting finite
data points.

We first make some assumptions on the random vector ξ

and disturbance wk.

Assumption 1 (i.i.d. Disturbance): We assume that in the
discrete-time LTI system (1), the disturbance wt is an i.i.d.
random process with covariance matrix Σwk and mean µwk
for all t ∈ N0, which can be computed from data.

The i.i.d. random process is a common assumption made
in control literature, e.g. [28], [24]. It assumes a priori
that only the first two moments of the random process
are acquired as partial distributional information, which can
either be estimated or determined a priori [29].

Assumption 2 (Moment Assumption [30]): There exists a
positive α such that

∫
Ξ

exp(‖ξ‖α)Q(dξ )< ∞.

This assumption trivially holds for a bounded uncertainty set
Ξ and finite measure P.

Assumption 3 (Polytope Uncertainty Set [17]): The space
M (Ξ) of all probability distributions Q is supported on a
polytope Ξ :=

{
ξ ∈ Rnξ : Cξ ξ ≤ dξ

}
.

This assumption means that a shape of the uncertainty
set is predefined. This is a common assumption [31] in the
context of robust optimization requiring the disturbance not
to be infinitely large. This directly stipulates the transforma-
tion of distribution into linear inequalities. We subsequently
illustrate the equivalent tractable reformulation of the distri-
butionally robust control problem (9).

Theorem 1 (Tractable convex optimization): The optimal
control problem (9) with a discounted quadratic cost, dis-
tributionally robust constraints within a Wasserstein ball
Bε

(
P̂Ns

)
centered at the empirical distribution P̂Ns with Ns

samples and radius ε can be reformulated as a cone program
(11) using the equivalent affine control laws from lemma 1
and under Assumptions 1-3.

infHN ,λ ,si,γik
Tr
{[
(C̃x +BxHN)

>Jx(C̃x +BxHN)+H>N JuHN
]

Σw
}

+µ>w
[
(C̃x +BxHN)

>Jx(C̃x +BxHN)+H>N JuHN
]

µw
s.t. λ jε +

1
N ∑

N
i=1 si j ≤U j

bt j +
〈

at j, ξ̂i

〉
+
〈

γi jt ,dξ −Cξ ξ̂i

〉
≤ si j∥∥∥C>

ξ
γi jt −at j

∥∥∥
∗
≤ λ j, γi jt ≥ 0

∀i≤ Ns,∀ j ≤ Nb,∀t ≤ N,
(11)

where Jx := diag
(
diag

(
β 0, . . . ,β N−1

)
⊗Q,β NQ f

)
, Ju :=

diag
(
β 0, . . . ,β N−1

)
⊗ R, at j =

[
(BxHN +C̃x)

]
tnx+ j,2:Nnw+1

and bt j =
[
(BxHN +C̃x)ξ̂i

]
tnx+ j,1

. Ns, Nb and N denote

sample number, state bound number and length of prediction
horizon, respectively. U j is the bound on state. ξ̂i indicates a
data point in the training data set, comprising the disturbance
sequence consisted of N sampling time.

Proof: We shall prove the equivalence of the objective
function and constraints in (10) and (11) respectively. Ap-
plying (9) with states stacked over the prediction horizon N
from (5) shows that the objective is a minimax expectation



of quadratic cost given a disturbance sequence

inf
HN

sup
P

EP∈Bε(P̂Ns)

{
w̃>[k,k+N−1]

[
(C̃x +BxHN)

>Jx(C̃x

+BxHN)+H>N JuHN

]
w̃[k,k+N−1]

}
.

(12)

Then, under Assumption 1, the mean µw[k,k+N−1] and co-
variance matrix Σw[k,k+N−1] of the i.i.d. disturbance sequence
are known/computed from the data, the expectation of the
quadratic cost is equivalent to the objective function in (11)
according to [32, THEOREM 1.5].

Given constraints in (10), representing the worst-case
expectation, the linear combination of states is bounded, and
we can therefore prove that they are equivalent to constraints
in (11). This is without loss of generality, by proving the
equivalence of constraints requiring only

max({[x[k,k+N]]i} j+mnx
i= j )≤U j,∀m ∈ [0,N], (13)

where U j is a prescribed upper bound on j-th component of
state.

Given the stacked state represented by the initial state x0
and disturbance sequence as in (5), any component of the
stacked state within the N-step prediction horizon can be
written as

[x[k,k+N]]i = e>i (A
Nx0 +

N−1

∑
n=0

AnB(hN−1−n +
N−1−n

∑
τ=0

(Hn,τ (DAτ x0

+
τ−1

∑
κ=0

DAκCwτ−1−κ +Ewτ )))+
N−1

∑
n=0

AnCwN−1−n).

(14)

Thus, we then define a pointwise maximum function

` j(ξ ) = max({[x[k,k++N]]i} j+mnx
i= j ) = max

t≤N

〈
at j,ξ

〉
+bt j, (15)

where at j =
[
(BxHN +C̃x)

]
tnx+ j,2:Nnw+1 and bt j =[

(BxHN +C̃x)ξ
]

tnx+ j,1 to shift the maximum value of
j-th state entry at each sampling time.

Leveraging the result from [17, Corollary 5.1], the distri-
butionally robust constraints in (10) are rewritten into ”best-
case” constraints

infλ jε +
1
N

N

∑
i=1

si j ≤U j (16)

along with several additional inequalities. Hence, any feasi-
ble solutions of (11) guarantee constraints satisfaction of (8).
We thus prove the equivalence of the distributionally robust
optimization problem (10) and cone program in the form of
(11).

Remark 1: The lower bound is constructed by setting
` j(ξ ) = max({[−x[k,k++N]]i} j+mnx

i= j ) and U j as negative of the
lower bound.

Remark 2: Note that in Section II we require the state
constraints to be polyhedral Cpx[k,k+N] ≤Dp, i.e. only linear
combinations of separate state entries. Therefore, ` can be

selected as an affine function of the states and the distri-
butionally robust constraints and (8), which can therefore
be reconstructed by a function ` which is affine in the
disturbances and initial state. Distributionally robust poly-
hedral state constraints can then be reformulated into the
intersection of linear inequalities as in (11) by considering
joint state constraints of several separate state entries effected
by a disturbance sequence.

We further prove that the control laws determined by (11)
are able to guarantee constraints satisfaction with a finite
number of samples.

Theorem 2 (finite sample guarantee [17] ): If Assump-
tion 2 (finite moment) holds, and given HN as the worst-
case control law determined via (11) with ambiguity set
Bε(Ns,β )

(
P̂Ns

)
and training data set Ξ̂Ns . Then, for any

p 6= nwN/2 the finite sample guarantee with confidence level
1−β

PNs
{
EP[`(ξ ,HN)]≤U

}
≥ 1−β (17)

holds, where β ∈ (0,1).

Proof: The finite sample guarantee is the simple
consequence of [30, Theorem 2]. Under Assumption 2, the
probability that the Wasserstein ball radius does not contain
the true probability distribution P is upper bounded by

PNs
{

dW

(
Q, P̂Ns

)
≥ ε

}
≤C exp(−cNsε

κ)Iε≤1

+C exp(−cNsε
α/p)Iε>1,

(18)

where κ(p,ε) = 2 if p > nwN/2, and κ(p,ε) = d/p if p ∈
(0,nwN/2). The positive constants C and c depend only on
p,Ns,N,nw,α .

Let p = 1 for a type-1 Wasserstein metric, we equate the
right-hand side of (18) to β and thus acquire

ε(Ns,β ) =

{ (
log
(
Cβ−1)/(cNs)

)1/κ if Ns ≥ log
(
Cβ−1)/c(

log
(
Cβ−1)/(cNs)

)1/a if Ns < log
(
Cβ−1)/c.

(19)
This directly result in

PNs
{
P ∈ Bε(Ns,β )

(
P̂Ns

)
≥ 1−β

}
(20)

when Ns is an appropriate finite value. Therefore,
EP [`(ξ ,HN)] ≤ supQ∈Bε(Ns,β )(P̂Ns)

E [`(ξ ,HN)] ≤ U with
probability 1−β .

Remark 3: The proof of Theorem 2 demonstrates that for
any given β , we can guarantee that the true distribution is
contained within the Wasserstein ball with confidence level
1−β if we can either collect sufficient samples or expand
the ball radius to be large enough.

Remark 4: For convenience of the proof, we required p 6=
nwN/2. However, a similar inequality with κ = ε/ log(2+
1/ε))2 holds for p = nwN/2.

After solving (11) we acquire control laws HN to govern
inputs in the succeeding N steps. By following (3), each



input within the prediction horizon can be determined by
current and prior purified outputs within the horizon. We
can therefore find a policy and then recursively re-solve the
conic optimization problem to update our control laws for the
subsequent Nu steps. Algorithm 1 illustrates this procedure.

Algorithm 1 Distributionally robust MPC
1: Input: A, B, C, D, E, µw, Σw, Jx, Ju, U j, ε , Cξ , dξ

2: Initialize x, C̃x, Bx, D , Ns, N, Nb, Nu, at j, bt j, k = 0
3: repeat {every ∆T}
4: if (k mod Nu == 0) then
5: Acquire estimated state xk and update C̃x, at j, bt j

6: Select samples from D to formulate Ξ̂Ns

7: Solve (11) for HN
8: Denote the sampling time t = k for control laws

update
9: end if

10: Acquire purified observation vk
11: Calculate uk = hk−t + ∑

k
τ=t Hk−t,τ−tvτ by using pu-

rified observations collected since time instant t of
recent control law update

12: Store vk, determine the corresponding wk and store wk
in D

13: update Ns
14: k = k+1
15: until END

Remark 5: Nu is the prescribed period of update control
laws and it can be selected from {1, . . . ,N− 1} depending
on the severity of disturbance and computational cost. To
improve the closed-loop performance, a smaller Nu may be
selected, while a larger Nu is chosen to reduce computational
cost.

Remark 6: D is the data set containing individual distur-
bances collected either prior to or during the process. Each
sample ξ̂i fed to (11) is a disturbance sequence of N individ-
ual disturbances, i.e. a window of past instances. It therefore
requires that D contains at least N disturbance data points
at initialization. If the disturbance data points are collected
in a time sequence, it is possible to replace the oldest data
point in the sample ξ̂i with the newly collected disturbance
data point and incorporate one more sample ξ̂ into (11) after
every N steps. An upper bound may be predefined to limit
the maximal number of samples incorporated to determine
the control laws to cap the maximal computational cost.

V. SIMULATIONS AND RESULTS

In this section, we test the proposed Algorithm 1 on a
disturbed mass spring system. We investigate the impact
of data samples on the constraint satisfaction, as well as
the finite sample guarantee. We also test this framework
on an inverted pendulum system and analyse the influence
of various Wasserstein ball radii on state trajectories. We
first clarify the simulation details and then compare the

performance under a number of settings by analysing their
constraint violation.

A. Configuration

We introduce configurations for the subsequent exper-
iments now. Both experiments discretize continuous time
models and disturb the systems with sampling period ∆T =
0.1 s. The prediction horizon is set to N = 5 and each entry
of wk complies with the random process 3sin(X), where X ∼
N (0,1). Therefore, we acquire Cξ = diag(1, . . . ,−1, . . .)
and dξ = [3, . . . ,3] ∈ R2Nnw . The target of both control
problems is to steer the disturbed system to the origin whilst
satisfying state constraints.

B. Mass spring system

We consider a mass spring system from [33] to illustrate
the effectiveness of the proposed Algorithm 1. Maintaining
the configuration above, an experiment is conducted with ε =
1 and Nu = 1, i.e. the control law is updated at each sampling
time. The weighting matrices are given by Q = diag(10,1),
Q f = diag(15,1), R = 1. Mass position is directly influenced
by 1e-3 times disturbance and the measurement of position
is also noised by another i.i.d. disturbance scaled by 1e-3,

i.e. C =

[
1e-3 0

0 0

]
and E = [ 0 1e-3 ]. The velocity of

mass is upper bounded by 0.4 m/s.

The simulations for Algorithm 1 realize state trajectories
with 1,3,5 collected samples respectively prior to initializa-
tion and uses at most 10 recent samples from the data set to
avoid large computational costs. As a result, as seen in fig.
1, if we only consider one sample initially, our approach
steers the states aggressively. As more samples are used,
either collected throughout time or when these samples are
provided from the start, the controller steers the state with
higher confidence and constraints are satisfied. To analyse
our results 50 realizations of the problem are solved. The
shaded area of 25-th to 75-th percentiles of simulation ini-
tialized with one sample reduces drastically after 1 second -
i.e. after collecting two more samples. Additionally, the 75-th
percentile of trajectory with Ninit = 5 remains feasible during
entire simulation, which also manifest higher confidence of
constraints satisfaction after acquiring more samples. This
is in line with our theoretical results, the number of sam-
ples notably increases confidence on constraints satisfaction,
and even with few samples, the approach does not exhibit
too much conservativeness. Furthermore, the approach is
tractable as a convex cone program is solved.

As demonstrated in fig 2, the ball radius is fixed as 1, the
same as in fig 1. We simulate the state trajectory with sample
numbers ranging from 1 to 10, each with 50 realizations.
The control laws are determined at each sampling time with
different samples collected prior to initialization to demon-
strate the relation between number of sample and constraint
satisfaction. We can read from the figure that the averaged
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Fig. 1. Simulation results of Algorithm 1 from 50 realizations. The shaded
area denotes the 25-th to 75-th trajectory distribution.

trajectory of 50 realizations with only 1 sample tends to
violate constraints from the beginning and to oscillate as
time increases. In contrast, with large number of samples,
constraints are satisfied, this seems to happen for trajectories
with sample numbers larger than 5. Furthermore, results from
fig 3 illustrate that the confidence of constraints satisfaction
is monotonically increasing along the sample number.
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Fig. 2. Simulation results of (11) averaged from 50 realizations with sample
number ranging from 1 to 10.
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Fig. 3. Relation between sample
number and constraint violations
within first four seconds, averaged
from 50 realizations.
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Fig. 4. Relation between Wasser-
stein ball radius and constraint vi-
olations within first two seconds,
averaged from 10 realizations.

C. Inverted pendulum

This section illustrates that the constraint violation with a
limited number of samples can be mitigated to a significant

degree by increasing the Wasserstein ball radius, however,
it may leads to conservativeness. We consider an inverted
pendulum system represented as the state-space model [34].
Since our interest in this section is to demonstrate the
impact of the ball radius, simulations, each with 10 real-
izations, are carried out for various ball radii, ranging from
0.01 to 100. Control laws are updated at each sampling
time with one sample. The weighting matrices Q and Qf
are diag(1000,1,1500,1) and R = 1. The pendulum rota-
tional velocity is disturbed by a 1e-2 times disturbance,
whereas the measurement of pendulum angular displacement
is noised by another i.i.d. disturbance scaled by 1e-2, i.e.

C =

 0 0
0 0
0 0

1e-2 0

 and E = [ 0 1e-2 ] The angular velocity

is upper bounded by 0.5 1/s.

Same as in the first experiment, we use samples collected
prior to the initialization to solve (11) at each sampling time
in various settings. As displayed in fig 5, with radius smaller
than 1, the state trajectories violates constraints extensively
since the center of the ball is roughly located only with
one sample and it is very likely that this ball does not
contain the true distribution. As the ball radius increases,
less constraint violations occur. If a radius of 3 or 5 is used,
less constraint violations occur, this guarantees constraints
satisfaction with probability 65% and 80% respectively from
the simulation. However, if the radius is unnecessarily large,
the state trajectories tend to be conservative, e.g. angular
velocity varies around 4.7, which is 6% lower than the
upper bound. We can also learn from figure 4 that the
confidence of probabilistic constraints satisfaction increases
as the Wasserstein ball expands when the number of sample
is fixed.
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Fig. 5. Simulation results of (11) averaged from 10 realizations with
Wasserstein ball radius ranging from 0.01 to 100.

VI. CONCLUSIONS

In this paper, we propose a novel data-driven distribu-
tionally robust MPC method for linear systems using the



Wasserstein ball. Our approach relies on building an am-
biguity set defined by the Wasserstein metric which allows
to characterize the uncertainty even when limited informa-
tion on the probability distributions is available. In this
approach we reformulate the distributionally robust optimal
control problem into a tractable convex cone program with
finite sample guarantee and propose a practical Algorithm.
Numerical case studies on two systems are conducted to
illustrate the effectiveness of the Algorithm and to verify
the assumptions and theoretical results, such as the finite
sample guarantee. Future work includes extending the current
approach to incorporate nonlinear dynamics.
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