RESEARCH INTERESTS	Optimal Control, Nonlinear Control, Industrial Networks and Fieldbus, Embedded System	
EDUCATION	Imperial College London <i>PhD student</i> Topic: Safety-critical Data-driven Control	London, United Kindom Jan 2021 -
	Technische Universität Dresden (TU Dresden)Dresden, GermanyDiplom-Ingenieur in MechatronicsSept 2016 - June 2020Thesis: Comparative Studies on Nonlinear Model Predictive ControlCoursework:Coursework: Flatness-based Control, Robust Control, Robotics, Multibody Dynamic	
	Zhejiang University of Technology B. Eng. in Mechanical Engineering & Automation Thesis: Humanoid Wrist Joint Design Coursework: Principles and Application of Microcomputer.	Hangzhou, China Sept 2012 - June 2016 Digital Circuit, Mechanical
	Design	
RESEARCH EXPERIENCE	Institute of Control Theory, TU Dresden Graduate Thesis	Dresden, Germany June 2019 - Jan 2020
	• NMPC strategies research. Examined nominal and robust stability of NMPC strate- gies and compared the performance of strategies by simulating example systems on a self-developed Python modelling framework.	
	• Extension of nominal NMPC to learning-based NMPC. Enhanced the performance of the controlled process with structure uncertainty and disturbance.	
	• Comparison between NMPC methods and a flatness-based method regarding control performance, feasible region, design complexity and computing costs in scenarios of a floating system, PVTOL aircraft and planar manipulator.	
	• Reconstruction of a floating object system with a STM32 Nucleo board. Boosted control performance notwithstanding one third sampling frequency versus the previously implemented PID-controller - 6% according to $L1$ norm criterion and 79% less convergence time.	
	Institute of Control Theory, TU Dresden Advanced Seminar	Dresden, Germany Oct 2018 - Jan 2019
	• Investigation and implementation of two flatness-based approaches to control non- linear and non-flat systems: 1. added a compensator to construct a flat system with flat inputs 2. used fictitious inputs.	
	• Comparative studies of two methods. Researched the application requirement, scope, pros and cons of two methods - the second method is less computationally intensive and does not require observability or discretization to avoid singularity in compensator.	
	Fraunhofer IPMS Research Assistant	Dresden, Germany Apr 2018 - Oct 2018
	• FPGA-based testbed for the IPMS-constructed Time-Sensitive-Networking(TSN) IP-Core. Developed a testbed that accomplishes communication of three different types of data streams between FPGAs and demonstrates the effect of traffic shaping algorithm through observing the communication quality of the low-priority data streams.	
	• Realtime-guaranteed communication control application in FreeRTOS. Designed and implemented an application that provides services for package management, traffic	

• Realtime-guaranteed communication control application in FreeRTOS. Designed and implemented an application that provides services for package management, traffic shaping, and algorithm configuration through UDP-package - jitter of data stream with the lowest priority under a heavy network load is under several micro-seconds.

- Development of a network-device-driver-based hardware driver for CAN-FD-IP-Core. Developed a configurable driver that supports multiple protocols and provides services for message filtering, data transfer, remote data request, and recovery management.
- Control application for multiple bus-nodes. Developed an application-layer software that manages communication among multiple CAN-FD transceivers on the same CAN-FD bus.
- Validation of CAN-FD driver and device. Conducted a reliability test to measure the transmission performance of CAN-FD packages with various bit rates and packet, and validates the applicability of CAN-FD-IP-Core in the automotive and industrial scenarios.

PROJECT Electronic travel aids TU Dresden EXPERIENCE Object classification for the blind-assistant facility using surface features collected with sonar.

3D VR object modeling

• Processing facility modeling in VR for interaction and process data visualization.

Trajectory planning and robot control

• Robot trajectory design and machining operation control for laser robot.

Intelligent Parking Assist System

• Design and implementation of an automatic parking assistant through space detection, motor control and prediction control algorithm.

PATENT Racing car design for Formula Student China; Patent number: CN205044823U

SKILLS Programming:

Advanced - C, Matlab Intermediate - Python, Verilog, C++, Assembly **Machine and structural:** Stress analysis with the help of ANSYS Workbench, detail drawing and layouts using AutoCAD and SOLIDWORKS

Fraunhofer IWS

TU Dresden

TU Dresden